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FOREWORD 

This report  was prepared by North American Aviation, Inc., Space 
Division, under NASA Contract NAS9-4552, for  the National Aeronautics and 
Space Administration, Manned Space Flight Center, Houston, Texas, with 
D r .  F. C. Hung, Program Manager and Mr. P. P. Radkowski, Assistant 
P rogram Manager. 
Structural  Mechanics Division, MSC, Houston, Texas with Dr. F. Stebbins 
a s  the technical monitor. 

This work w a s  administered under the direction of 

This report  is presented i n  eleven volumes for convenience in  handling 
and distribution. A l l  volumes a r e  unclassified. 

The objective of the study was to develop methods and For t r an  LV 
computer programs to determine by the techniques described below, the 
hydro-elastic response of representation of the s t ructure  of the Apollo Com- 
mand Module immediately following impact on the water. The development 
of theory, methods and computer programs i s  presented as Task I Hydro- 
dynamic P res su res ,  Task I1 Structural Response and Task 111 Hydroelastic 
Response Analysis. 

Under Task I - Computing program to extend flexible sphere using the 
Analytical formulation Spencer and Shiffman approach has  been developed. 

by Dr. Li using nonlinear hydrodynamic theory on s t ructural  portion is 
formulated. In order  to cover a wide range of impact conditions, future 
extensions a r e  necessary in  the following items: 

a. Using l inear hydrodynamic theory to include horizontal velocity 
and rotation. 

b. Nonlinear hydrodynamic theory to develop computing program on 
spherical  portion and to develop nonlinear theory on toroidal and 
conic sections. 

Under Task I1 - Computing program and Use r ' s  Manual were  developed 
for nonsymmetrical  loading on unsymmetrical elastic shells. 
develop the theory and methods to cover real is t ic  Apollo configuration the 
following extensions a r e  recommended: 

To fully 

a. Modes of vibration and modal analysis. 

b. Extension to nonsymmetric shor t  time impulses. 



C. Linear buckling and elasto-plastic analysis 

These technical extensions will not only be useful fo r  Apollo and 
future Apollo growth configurations, but they will a lso be of value to other 
aeronautical and spacecraft programs. 

The hydroelastic response of the flexible shell  is  obtained by the 
numerical  solution of the combined hydrodynamic and shell  equations. 
resul ts  obtained herein a r e  compared numerically with those derived by 
neglecting the interaction and applying rigid body p res su res  to the same 
elastic shell. 
impact of the particular shell studied, the interaction between the shell  and 
the fluid produces appreciable differences in the overall acceleration of the 
center of gravity of the shell, and in the distribution of the p re s su res  and 
responses. However the maximum responses a r e  within 15% of those pro- 
duced when the interaction between the fluid and the shell  i s  neglected. A 
brief summary of resul ts  is  shown in the abstracts  of individual volumes. 

The 

The numerical  resul ts  show that for  an axially symmetr ic  

The volume number and authors a r e  listed on the following page. 

The contractor 's  designation for this report  i s  SID 67-498. 
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ABSTRACT 

A numerical procedure is  presented for  the solution 
of reduced field equations for shells. 
developed is an improved vers ion of the numerical scheme 
presented by Budiansky and Radkowski for  the solution of 
shell problems. Eccentric discontinuities and branched 
shells a r e  included. 
applied to any consistent set  of shell equations based on 
any shell theory. 

The technique 

The procedure i s  general and can be 
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SYMBOLS 

MAT RIC ES 

E, F Y  GY H Y  J 

e ,  f 

Z 

Y 

[m x m ]  matr ices  representing shell 
material and geometric properties 

(m x 11 column vectors f o r  external 
and thermal  loads 

lm x 1) column vector of the pr imary 
problem variables 

[m x m] diagonal mat r ices  

1m x 1) column vector 

1m x 11 column vector of the secondary 
problem variables 

[m x m ]  discontinuity matr ices  

[m x m] matr ices  used in the 
numerical solution 

1m x llcolumn matr ix  used in the 
numerical solution 

Fourier  coefficients for  displacements 
in the meridional, circumferential, 
and normal directions, respectively 

Fourier  coefficient f o r  the meridional 
bending moment 

a reference length 
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A internal size 

j discontinuity station 

l4J abrupt angle change at discontinuity 

Ecc 

SUPERSCRIPTS 

I 

dimensionless eccentricity at 
discontinuity 

re fers  t o  values just behind a 
discontinuity 

re fers  to values just ahead of a 
discontinuity 

F o r  additional information, see the text of this report  o r  the nomen- 
clature l i s t  of Reference 2.  
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1 . 0  INTRODUCTION 

Due to the mathematical complexity of the shell field equations, it 
becomes necessary t o  employ numerical techniques in  order  to  obtain 
solutions to the governing differential equations. 
cedures have been presented in  the l i terature  for handling the shell problem. 
Of particular interest  i s  the direct o r  Gaussian elimination procedure f i r s t  
presented by Pot ters  (Reference 1) and successfully applied by Budiansky 
and Radkowski (Reference 3)  to  shell problems. 

Various numerical pro-  

In this report an improved version of this numerical procedure to be 
used in treating general shell problems is presented. The procedure 
developed is similar to that described in  Reference 2 expecting for  the 
refinements introduced for  treatment of boundary, discontinuity, and 
branched conditions. 
having continuous and discontinuous reference surfaces. 

The analysis considers the case of discontinuties 

The numerical procedure i s  perfectly general and i s  applicable fo r  
solution of most appropriate sets of shell equations. 
used for  solution of the shear deformation shell equations described in  
Reference 5; the three-layer shell theory, presented in Reference 4; the 
unsymmetric shell analysis described in  References 6, 7, and 8 and the 
equations of Sanders' theory treated in Reference 2. 

The technique can be 

The numerical procedure can be easily mechanized for  use on the 
digital computer. 

- 1 -  



2 . 0  SHELL EQUATIONS 

The field equations describing the behavior of shells a r e ,  i n  general ,  
By using various equation reduction a set  of partial  differential equations. 

techniques (e. g . ,  Fourier  s e r i e s  expansions (Reference 2)), it is possible 
to  reduce the general shell problem t o  the consideration of a set  of ordinary 
differential equations which can b e  expressed in matr ix  f o r m  as  follows: 

EZ"  t F Z '  t GZ = e (2. 1) 

where E, F, and G a r e  [m x ml matr ices  representing shell mater ia l  and 
geometric properties and e i s  an  lm x 1) column matr ix  for  external and 
thermal  loads. 
var iables  and the pr imes  represent differentiation with respect t o  the 
meridional coordinate. 

The Z matr ix  is an lrn x 11 column matr ix  of the problem 

The matr ix  equations described above a r e  s imilar  in form to 
Equations (39)  developed in Reference 2 for  shells of revolution. 
is  a l so  consistent with the three  layer shell equations [(Equation 6) of 
Reference (4) , the shear  distortion shell equations [Equation ( 9 )  of 
Reference (5) , and the unsymmetric shell equations [Equations (33 ) ,  (41), 
and (20) of References (6),  (7), and ( 8 ) ,  respectively].  

The form 

I 
The order  m of the matrices in  Equation 1 i s  determined by the number 

of var iables  used to describe the shell problem; e. g. , f o r  axisymmetric 
t h ree  layer  shell theory (Reference 4) m = 5, for  shear deformation theory 
(Reference 5)m = 5, fo r  unsymmetric shells (Reference 6)m = 5K and 
(Reference 7)m = 4K. 
retained in  the se r i e s  expressions. ) 

( K  represents the number of Fourier  coefficients 

F o r  ease  of presentation, it wil l  be convenient to  utilize the shell 
equations and nomenclature presented in Reference 2 .  
and the  mat r ix  of variables Z is given by 

In this  case  m = 4 

Z =  [ ? ]  
m c  

- 3 -  



The procedure developed would be similar for  the shell equations 
described in References (4), (5) ,  (6) ,  and ( 7 ) .  (The change of nomenclature 
should be noted when dealing with these references.  ) 

The boundary conditions consistent with the various shell theories can 
be written in matr ix  form as 

where R and A a r e  appropriate diagonal mat r ices .  
example. ) 

(See Reference 2 f o r  

The shell equations (Equation 2 .1 )  a r e  not valid a t  points in the shell 
where discontinuities in geometry occur.  
equations a re  required. 
given by 

In this case  special transition 
These equations a s  presented in Reference 2 a r e  

( 2 . 4 )  

where the I and I1 superscr ipts  represent  values just behind and ahead of a 
discontinuity and \k is matrix describing the geometry change. 

Equations 2 . 4  can be combined with Equation 50 of Reference 2 to 
yield a single equation which represents  compatibility ac ross  the discon- 
tinuity. This equation can be written as 

I 1  I 11 
HI1(Z1)" t [ JIIQ - QJI] Z1 - Q H  ( Z l )  = Qf - f 

where the I and I1 superscripts indicate that the mat r ices  H, J ,  f a r e  deter-  
mined on the basis  of shell propert ies  just  behind and ahead of the discon- 
tinuity respectively. 

The differential equation (2 .  l ) ,  the boundary conditions ( 2 .  3 )  and the 
discontinuity conditions (2 .  5) completely descr ibe the  boundary value 
problem for shells. 
priate finite-difference equations to facilitate numerical  solution. 

These equations will be cast  i n  a unified set  of appro- 

- 4 -  



3 . 0  FINITE DIFFERENCE FORMULATION 

In solving a general shell problem it i s  convenient to divide the shell 
into regions. Suppose that p discontinuity locations s i ,  52, . . . sp occur in 
the range (0, s )  of the shell; the shel l  could then be divided into p t 1 regions. 
Each of the shell regions (01 s l ) ,  (S I ,  s z ) ,  . . . (sp, 5 )  can in turn  be sub- 
divided into V i ,  V2, . . . Vp+l equal increments,  respectively. The incre-  
ments a r e  identified by the index i, running f rom zero at s = o to  N(=CV) at 
s = s. 
Reference 2 )  a r e  then 

- 

- 
The length of the increments in the nondimensional variable 6 ( see  

i n  the successive regions bounded by the discontinuities. 
that fictitious discontinuities may be inserted wherever a change in the 
increment size is  considered desirable. It will be convenient t o  denote the 

It should be noted 

discontinuity stations by i = jm (m = 1, 2,  , . . , PI. 

The difference equations (2.1) can be written in finite difference form 
at all stations excepting the boundaries i = 0, N and at discontinuties 
j, (m = 1, 2, . . . , p) on the basis  of the usual central  difference formulas: 

where A must  be the one corresponding to  the region associated with 
station i. 

- 5 -  



An improved procedure over that described in  Reference 2 will be 
used to  incorporate the discontinuity relations 2.5 into the analysis. To 
il lustrate the finite differencing at a discontinuity it will be convenient to  
employ a model as shown in Figure 1 ; where , for  convenience, the subscript 
m has been omitted on each j .  

At the r n t h  discontinuity (1s m s p )  expressions for  first and second 
derivatives, i n  finite difference form,  a r e  given by 

Using Equations ( 3 .  3 ) ,  Equation (2 .  5) becomes 

(3.4) 

Notice that Equation 3.4 contains Z mat r ices  evaluated at the fictitious 
I and I1 ( see  Figure 1). These two points can be eliminated f rom points 

the analysis by writing equilibrium equations a t  the point i = j1 and i = jI1 
as follows: 

j+ 1 j - 1  

- 6 -  



Actual Discontinuity 

6 

Figure 1, Finite Difference Stations in Discontinuity Region 
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I where the e and e'' have the same form a s  at  other stations. 
difference form, these become: 

In finite 

(3. 5) 

zj t l ]  t G I 1  zj = e I 

and 

I1 I1 I1 t G  Z j  = e 

I I1 
Solving Equations 3 .5  for Z j + l  and Z j -1  , we obtain 

. 
-1 

I 2EI + - -  [2E1 t I?'] 2A m e +[q 
zj:l - A r n  

-1 

j - 1  m Am 

- 8 -  



and 

I1 I1 -1 
I' - - [ * - F'"] 2Am+1e 

'j-1 Amt1 

Equations 3 .  6 and 3.  7 can be substituted into Equation 3 .  4 t o  yield a finite 
difference expression at a discontinuity f r ee  of fictitious points. Since the 
Z mat r ices  at j1 and Jrl a r e  related by Equation 2.4,  it will be convenient to  
eliminate jlI a s  an explicit point. The following expressions for  derivatives 
at  the top and bottom boundaries respectively, a r e  of the same order  of 
e r r o r  a s  the central difference expressions used at all interior points: 

Different expressions were used in Reference (2).  

The resul ts  of writing the various difference expressions just described 
can be stated compactly as  the following set  of algebraic equations for  
Zi (i = 0, 1, 2, . . , N) 

( 3 .  9 )  

- 9 -  



where the conditions at the boundary a r e  given by 

A, = 'GO% 

2A1 

2GoHo Bo =-q- 

C = A o t R  J -3RoHo 
0 0 0  

2A1 

F o r i  # 0, j m ,  jm+l ,  N ( m  = 1, 2 ,  . . . ,  P) 

2 Ei 
t Fi Ai - - 

A 
- 

4E. 
t 2AGi 1 -- - 

A Bi - 

2 Ei ci - - - - Fi 
A 

= 2Aei g i 

( 3 .  10) 

( 3 .  11) 

where the appropriate value fo r  A i s  used. 
applies except that 

F o r  i = j m + l ,  Equation 3 .  11 

( 3 .  12) 

- 10 - 



c f 

I t- (2f: -tF I ) '  2Ame 
2Am 

At boundary i = N (s = E )  we find 

AN = AN t f i N J N t  3'NHN 

2AP 

(3. 14) 

It should be noted that for  fictitious discontinuities Equations 3. 9 with 
coefficients given by Equations 3.13 may be reduced t o  Equations 3. 9 with 
coefficients given by Equations 3.11 which would be expected fo r  a continuous 
system. 
Reference 2. 
g rea te r  accuracy than the backward (forward) differencing utilized at 
discontinuities in Reference 2. 

Such a relationship was not possible f o r  the procedure used in  
In addition, the use of the central difference formulas offers 
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An alternative procedure for  describing Equations 3 . 9  at i = 0 ,  N i s  
This procedure would involve writing equilibrium equations and possible. 

boundary conditions (central  difference) at boundary points i n  t e r m s  of 
fictitious points. 
procedure s imilar  to that used in treating discontinuities. 
cedure the boundary matr ices  a r e  described a s  follows: 

The fictitious points can be eliminated by employing a 
F o r  this pro-  

(i = 0) 

SIH 2 E  -1 
go = k? - R f t z ( ~  - F )  2 A e  

and at i = N 
r 1 

. ( 3 .  15) 

( 3 .  16) 

The elimination technique for  this alternative approach would follow 
identically to  that described in Reference 2. 
significant advantages over the procedure herein presented. The elimination 
technique used to solve the developed equations a r e  presented in  Section 6. 0 .  

This technique offers no 

- 12 - 



4.0 THE ANALYSIS OF ECCENTRIC DISCONTINUITIES 

The problem of eccentric discontinuities i s  considered using the 
mathematical model illustrated in  Figure 2. 
tinuities, the discontinuity equations (Equation 2.4) a r e  replaced by the 
following: 

In the case of eccentric discon- 

11 I I =?Pzt M y  (4. 1) 

The detailed development of Equations 4. 1 for eccentric discontinuities i s  
presented in Reference 9. The matrices \k, 9, and )F( a r e  given by 

9 =  0 0  0 1  

sin o cos* o 

0 

0 

Eccn 
Pj I  
0 

0 

(4. 2 )  

o sinQ 

0 0  

(4.3) 

(4.4) 

In Equations 4. 3 and 4.4, Ecc is the dimensionless eccentricity of the 
participating reference surfaces measured along the radius of curvature 
behind the discontinuity point. 
value of Ecc corresponds to  an abrupt increase in radius of parallel  circle 
a s  one proceeds in the direction of increasing i). 

(It can be noted in Figure 2 that a positive 
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Using Equations 4. 1 in place of Equations 2.4 and following a s imilar  
reduction procedure a s  indicated in the text of this report  resul ts  in a set  
of equations analogous to Equations 3 .  12, 3 .  13 which hold for  the case  of 
eccentric discontinuities. These equations a r e  

a t  i = jm:  

H 'I HI1 ( cll)- 
A j =  -t 

2*II 9 

I 
H 

2 A  
J I1 (GI1)- BII H< I [ I t (A1)-'C1]- [.!(AI)-' C1 - 1.1 (4. 5) 

HI1 c ,  = - -  
2A 

where 

(4.7) 



-1 
I f  (A') C'] X. '  I J - 1  

11 
f cj f ,*- 

2AI 

Note that when E,, = 0, Equations 4.5 and 4. 7 reduce to Equations 3. 13 
and 3. 12 respectively, (H(= 0, l 

= Q ). 

In the evaluation of Equation 4.5, A', B I , C', g I , and A I1 , BII, cII, 
gI1 a r e  the values obtained using Equations 3 .  11 at  the points i = j1 and 
i = jI1 respectively. 
and g j +  I1 1 a r e  matr ices  obtained using Equation 3 .  11 evaluated at  

i = j t l .  

I 

I1 
j t l  

In addition, when evaluating Equation 4. 7, the C . 

Figure 2 Eccentric Discontinuity Model 
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5.0  MATRIX SOLUTION O F  DIFFERENCE EQUATIONS 

The more sophisticated difference expressions for  the first derivative 
at  the boundary points requires a slight alteration of the Gaussian elimination 
procedure described in Reference 1. 
the first and second of Equations 3. 9 which a r e  described by 

The elimination procedure considers 

Eliminating Z, f rom these equations, we obtain, 

F r o m  which we may solve for  Z1, as: 

and therefore Z1 can be written as  

z1 = - P1 z2 t x 1  

where 
-1 

P1 = [Bo - C, C c l  Bl]. [ A, - C, C1 -'A11 

-1 -1 
X1 = [Bo - Co C1 

(5.2) 

( 5 . 3 )  

(5.4) 
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Retaining the format of Equation 5. 3 fo r  a l l  meridional locations, we obtain 
the general result  

Z. = - Pi Z i t  1 t Xi ( i =  1, 2,  3 ,  ..., N - 1 )  (5. 5) 1 

It is shown in Reference 2,  Equation (74) that the p and x matr ices  
a r e  given by 

( i = 2 ,  3 ,  4, . . . ,  N -  1) 

At a l l  meridional stations the A, B, C and g matr ices  a r e  computed by 
Equation 3 .  11, with the exception that for  the boundaries we use Equations 
3. 10 and 3. 14 for  i = j , ,  j,, . . . , j p  ( i .  e .  , at  the discontinuity stations), 
the pertinent A,  B, C and g matr ices  a r e  given by Equation 3. 13 and at 
i = jm t 1 the C matr ix  is obtained using Equation 3. 12. Thus P and X 
matr ices  a r e  obtained for  a l l  i from 1 to N -1. Substituting the recursion 
relationship (Equation 5. 5) into the last  of Equation 3. 9 yields 

' ( ' N P N - 2  - B N ) X N - l ]  (5 .7 )  

where AN , BN , CN , and gN a r e  given by Equations 3.  14. Having zN , 
we can easily obtain ZN - 1 , ZN - 2 , etc. ,  using Equation 5. 5. 
Zo is calculated from the second equation of 3. 9, and i s  given by 

Finally, 

Once a l l  the Z matr ices  have been obtained, the calculation of 
s t resses ,  moments, e tc . ,  proceeds in a straight-forward fashion for  
several  shell theories. 

- 18 - 
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6.0 ANALYSIS O F  BRANCHED SHELLS 

It has been tacitly assumed that the shell under consideration has no 
more than two boundaries; a multiple-branch shell such a s  shown in Figure 3 
may be analyzed, however, by applying appropriate transit ion conditions a t  
the branch point. 

Define separate families of auxiliary matr ices  PI, PI', XI,  XI1 
and XIu with the properties 

zi I = - P i Z i t 1  I 1  t x i  I 

zfI= - Pi I1 Ziti I1 t xi I1 

yJ .---- _--* -- 

I 

I 

Figure 3. Branched Shells 

where the superscripts r e f e r  to the separate branches shown in Figure 3a. 
It i s  possible to s t a r t  the calculations of PI, XI and PI', XIr at  the boundaries 
of branches I and 11 and then leap across  the juncture j to the calculation of 
PIII, XIII. The reverse  sweep for the calculation of the Z ' s  then would s t a r t  
a t  the boundary of branch III and, at the juncture j ,  continue independently 
along the branches I and I1 back to  their  respective boundaries. The details 
of this  procedure a r e  herein given. This method can be extended readily to 
handle a multiplicity of branches a s  in Figure 3b; it wi l l  not, however, be 
applicable to closed loops (Figure 3c), which must be t reated separately by 
tradit ional cut-and-fit methods of indeterminate s t ructural  analysis. 

- 19 - 



The mathematical model considered fo r  the numerical  solution of 
branched shell problems is shown in Figure 4 with the possibility of a con- 
centrated force PD and MD applied at the juncture included. The program 
has been set up to handle 4 shell branches meeting at  a common point. 

I 

Figure 4. Mathematical Model for  Branched Shell 

By analogy with the previous discussion on discontinuity conditions, we may 
repeat here for branched shells the compatibility and equilibrium equations 
in the following manner: 

(M = I, 11 o r  111) 

d V =  uM cos + M - wM sin ,CIM 
6 s  

% - ue 
I V -  M 

Compatibility: 
W IV u y  s i n +  t wM cos + M 



I11 I11 
Equilibrium: tf - 1 t y  cos + M t  2 ?? sin +M - sin r$ 0 = 0 

- 
11 = 

M=I M=I 

0 
0 
0 
1 

M -  
111 

M 
I11 

- 1 t c  s i n +  

5 = 

M=I M=I 

s in+o 
0 

0 
-cos+() 

By recalling the definition of the y and z (Equation 2. 2) matr ices  and 
introducing the diagonal matr ices  

P 
1 

1 
0 

0 
1 

( 6 . 3 )  

(6.4) 

Equations 3.  9 and 6. 3 may be recast  in the formulas for  compatibility 

and for equilibrium 

I11 
t q p  = 2 pi& M M  y t q Z M  t Gt  { G  

p YIv 
M=I 

where 

(6.7) 
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Introducing Equations 6. 3 into 6. 5 and 6. 6 and noting 11 f = 0;  p f  = f and 
P\kf = Q f ,  we obtain: 

for compatibility: 

and for  equilibrium 

A central  finite difference scheme i s  used to obtain the numerical  
solution of Equations 6. 8 and 6. 9 within the framework of the Gaussian 
elimination procedure . 

To eliminate the fictitious points (they will be used in calculating fo r  
I I1 Zjt  I11 and Zj+ that 

internal forces and s t r e s ses  a t  junction) Zjt  , ‘j-tl, 
appear,  we utilize the equilibrium equations at  the ends of the adjoining 
regions of the juncture in a fashion s imilar  to  that used in the discdntinuity 
section. After substituting the expressions f o r  fictitious points in Equations 
6. 8 and 6. 9 and recalling the definitions of the A, B, and C mat r ices  (Equa- 
tions 2. 3 ) ,  we may write the recursive equation equivalent of Equation 2. 4 

for the branched shell. A s  (for jIV): 

(6. 10) 

whe r e  
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(6. 11) 

and 

where 

+ ( 'I J M +  P Q M )  M-ll - t *-l c pM-l t P 
M M - e  [-A: BM M M j  

2AM 

F o r  the remaining branch segments (i. e. , M = I, 11, 111), the following 
recursion formula is used: 

M M I V  M Iv M 

j J J  j j t l  j 
Z = Q .  Z .  t P  Z t X  

(6. 13) 
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where 

and (MM) is given by Equation 6. 12. 

I I PI1 PI1' - - pN-' a n d X ,  
Thus, from a knowledge of P j -1 '  j-1' j-1 j - 1  J-1, 

XI1 , - - - t  XN-',  the calculation can proceed directly to the determination 

of the Nth shell region, P 

the standard fashion. 

j -1  j -1  
N N  X j ,  and then t o  the boundary of branch N in 
j '  

SUMMARY 

An improved numerical  procedure has  been presented for the solution 

The report  presents  improvements to Reference 
of the shell equations. 
variety of shell problems. 
2 in handling boundary and discontinuity conditions. 

The procedure is general  and can be applied to a 
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